<<45678>>
31.

 The number of points in (-$\infty$, $\infty$) . for  which   $x^{2}-x\sin x-\cos x=0$ is


A) 6

B) 4

C) 2

D) 0



32.

let   $f:[\frac{1}{2},1]\rightarrow R$ ( the set of all real numbers) be a positive, non -constant and differentiable function such that f'(x)<2f(x)  and   $f(\frac{1}{2})=1$   .Then , the value of   $\int_{1/2}^{1} f(x) dx$ lies in the interval 


A) $(2e-1,2e)$

B) (e-1,2e-1)

C) $(\frac{e-1}{2}.e-1)$

D) $(0,\frac{e-1}{2})$



33.

A curve passes through the point   $(1,\frac{\pi}{6})$ let the slope of the curve at each point  (x,y) be   $\frac{y}{x}+sec(\frac{y}{x}),x>0.$  , then , the equation  of the curve is 


A) $\sin(\frac{y}{x})=\log x+\frac{1}{2}$

B) $cosec(\frac{y}{x})=\log x+2$

C) $sec(\frac{2y}{x})=\log x+2$

D) $cos(\frac{2y}{x})=\log x+\frac{1}{2}$



34.

The area enclosed by the curves y= sin x+cos x and y=|cosx-sinx| over the interval  $\left[0,\frac{\pi}{2}\right]$ is


A) $4(\sqrt{2}-1)$

B) $2\sqrt{2}(\sqrt{2}-1)$

C) $2(\sqrt{2}+1)$

D) $2\sqrt{2}(\sqrt{2}+1)$



35.

Four persons independently solve a certain problem  correctly with probabilities   $\frac{1}{2},\frac{3}{4},\frac{1}{4},\frac{1}{8}$ . Then, the probability that the problem is solved correctly by at least one of them is 


A) $\frac{235}{256}$

B) $\frac{21}{256}$

C) $\frac{3}{256}$

D) $\frac{253}{256}$



<<45678>>